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Abstract—The celebrated Four Functions Theorem of
Ahlswede and Daykin is a functional correlation inequality on
distributive lattices with myriad applications. Ruozzi proved a
variant of the inequality and used it to settle a major conjecture
in the area of graphical models. We prove a new functional
correlation inequality in the same vein which simplifies the proof
of both the Four Functions Theorem and of Ruozzi’s inequality
and suggests a unified picture for correlation inequalities on
distributive lattices.

Index Terms—Correlation-type Inequalities, Four Functions
Theorem, Super-modular Functions

I. INTRODUCTION

For a function f on a finite domain we denote the sum of
f over its entire domain by Z(f). When f expresses relative
probability, Z(f) is also known as the “partition function” and
f/Z(f) is a probability distribution.

Closely related to the problem of partition function estima-
tion are functional correlation inequalities, such as the FKG
inequality [4], the Holley inequality [5], and the Fishburn-
Shepp [3], [10] inequality. Remarkably, all of these inequalities
are special cases of the celebrated Four Functions Theorem of
Ahlswede and Daykin [2]. While this theorem is generally
stated for distributive lattices and sums over arbitrary subsets
of the domain, its heart is the more readily accessible Theo-
rem 1 below, from which one can easily derive even the most
general formulation, as we discuss in Section IV.

For x, y ∈ {0, 1}n let us denote by x ∨ y and x ∧ y the
bitwise OR and AND of x and y, respectively.

Theorem 1 (Four Functions). If f1, f2, g1, g2 : {0, 1}n 7→
R≥0 are such that for all x, y,

f1(x)f2(y) ≤ g1(x ∨ y)g2(x ∧ y) , (1)

then Z(f1)Z(f2) ≤ Z(g1)Z(g2).

Rinott and Saks [7] and, independently, Aharoni and Ke-
ich [1] generalized Theorem 1 so that there are k functions
on each side of (1) instead of two, for any k ≥ 2. In order
to state this generalization and other related results, and to
connect these results with partition function estimation, it will
be convenient to introduce the following notation.

Given a 0/1 matrix A, we denote by ↑A the matrix obtained
by sorting each column so that the 1s are on top and by

←−
A the

matrix obtained by sorting each row so that the 1s are on the
left. We write Ai∗, A∗j for the i-th row and j-th column of A,
respectively. We say that a function f : {0, 1}k×n 7→ R≥0 is
k-product if f (X) =

∏
i∈[k] fi (Xi∗), for some non-negative

functions f1, . . . , fk on {0, 1}n.
With this notation, the generalization of the Four Functions

Theorem to 2k functions can be stated as follows.

Theorem 2 ([7], [1]). If f, g : {0, 1}k×n 7→ R≥0 are
k-products and f (X) ≤ g(↑X) for all X , then Z(f) ≤ Z(g).

We strongly encourage the reader at this point to take the
time and verify the equivalence of Theorem 1 with the k = 2
case of Theorem 2, as in the rest of the paper we will be using
exclusively the notation of the latter.

Recall that a function f is log-supermodular if f(x)f(y) ≤
f(x∨y)f(x∧y), and log-submodular if the reverse inequality
holds. (Note that x, y may be binary matrices, or even tensors,
instead of binary vectors. Since ∨,∧ are element-wise oper-
ations, the “shape” of x, y is immaterial.) More than twenty
years after the generalization of the Four Functions Theorem
to 2k functions, in a seminal work Ruozzi [8] showed that
Theorem 2 continues to hold if the function f being bounded
is log-supermodular instead of k-product.

Theorem 3 ([8]). If f, g : {0, 1}k×n 7→ R≥0 are such that f
is log-supermodular, g is k-product, and f (X) ≤ g(↑X) for
all X , then Z(f) ≤ Z(g).

Ruozzi [8] used Theorem 3 and Vontobel’s characterization
of the Bethe approximation in terms of covers [11], in order
to prove that if a function f can be expressed as a binary,
attractive graphical model, then Z(f) is bounded from below
by its Bethe approximation, a major advance in the area of
graphical models.

II. OUR CONTRIBUTION

Our contribution is to suggest that all three theorems men-
tioned so far, i.e., the Four Functions Theorem, its generaliza-
tion to 2k functions, and Ruozzi’s variant for log-supermodular
functions, may be fragments of a larger picture. To that end we
prove a new variant of the Four Functions Theorem involving
log-submodular functions. Our theorem greatly simplifies the
proof of all aforementioned theorems.



A. Log-submodular Functions as Upper Bounds

Our new inequality asserts that Theorem 3 continues to
hold if the bounding function g is log-submodular instead of
k-product, so that a log-submodular function bounds a log-
supermodular function. To emphasize the parallels between the
different results, in Theorem 4 we bundle our new inequality
(case (a)) with Theorem 2 (case (b)) and Theorem 3 (case (c)).

Definition 1. If functions f, g : {0, 1}k×n 7→ R≥0 are such
that f (X) ≤ g(↑X) for all X , we write f ≺↑g.

Theorem 4. If f ≺↑g and
(a) f is log-supermodular and g is log-submodular, or
(b) f is k-product and g is k-product, or [7], [1]
(c) f is log-supermodular and g is k-product, [8]

then Z(f) ≤ Z(g).

Besides its inherent interest, our new inequality (case (a))
greatly simplifies both the proof of the 2k functions theorem
(case (b)) and of Ruozzi’s variant for log-supermodular func-
tions (case (c)). Indeed, our combined, self-contained proof of
all three cases of Theorem 4 occupies less than one page.

B. Discussion

If we think of the two functions f, g in Theorem 4 as
landscapes over the domain {0, 1}k×n, all three cases of the
theorem conclude that the volume under f is at most the
volume under g. To understand how this conclusion comes
about, it is helpful to think of (i) the domain of f, g as Bn for
some arbitrary base set B, instead of the specific B = {0, 1}k,
and (ii) of ↑ as an arbitrary function Bn 7→ Bn, instead of the
specific function that pushes the 1s in each column to the top.

With the above in mind, consider the partition of Bn

induced by ↑, where X,Y ∈ Bn are in the same part iff
↑X = ↑Y . Since ↑↑X = ↑X , the assumption that f ≺↑ g,
simply asserts that within each part, the highest peak of g is
at least as high as the highest peak of f . Of course, this is very
far from sufficient to conclude that Z(f) ≤ Z(g) (except for
the trivial case where ↑ is the identity, i.e., f(X) ≤ g(X) for
all X). That’s where assumptions (a)–(c) come in: by imposing
structure on f, g they constrain the relative drop-off rates from
the respective peaks, enabling the theorem’s conclusion.

A truly amazing property of the Four Functions Theorem is
that it allows for functions where the f -volume strictly exceeds
the g-volume in some parts. The conclusion Z(f) ≤ Z(g) is
remarkably reached by combining information about different
parts through projection, i.e., by induction on n. The same
is true for Theorems 2,3, i.e., cases (b),(c) of Theorem 4.
Naturally, for n = 1 the task of favorably combining in-
formation about different parts has to be done “by hand.”
Correspondingly, it is not an accident that the base case of
the induction is, by far, the hardest part in each proof.

To get a flavor, we state the base case of Theorem 1, which,
as noticed in [1], can be interpreted geometrically. Let L and
R be two rectangles, each subdivided into four rectangles as in
Fig. 1. For i ∈ {0, 1}, let f1(i) := αi, f2(i) := βi, g1(i) := γi,
and g2(i) := δi. The base case of the Four Functions Theorem

asserts the following highly non-obvious fact: if the lower left,
upper right, and lower right subrectangles of L have areas
bounded by the areas of the corresponding subrectangles of R,
while the area of the upper left subrectangle of L is bounded
by the area of the lower right subrectangle of R, then the area
of L is bounded by the area of R.
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Fig. 1. Geometric interpretation of Theorem 1 for n = 1

Our Theorem 4(a), for n = 1, k = 2, can also be interpreted
geometrically. But now L and R can be arbitrary shapes,
divided into four pieces each as in Fig. 2, and in order to
conclude that the area of L is bounded by the area of R it
is enough that: (i) the product of the areas of the two pieces
on the “main diagonal” of L is less than or equal than the
product of the areas of its other two pieces (reflecting that f
is log-supermodular), and (ii) the reverse inequality holds for
R (reflecting that g is log-submodular). This holds trivially in
the rectangular setting, as for any rectangle subdivided into
four, the product of the areas of its subrectangles in the main
diagonal equals the product of the areas of the other two
subrectangles. Thus, Theorem 4(a), establishes simultaneously
the base cases of both Theorems 4(b) and 4(c), giving a unified
and simplified proof of both results (see Section III).
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Fig. 2. Geometric interpretation of Theorem 4(a) for k = 2, n = 1.

Somewhat surprisingly, the proof of our Theorem 4(a) is not
inductive. We consider this to be an indication of getting closer
to the right “level of abstraction” governing these inequalities.
Naturally, deriving a non-inductive proof of cases (b) and (c)
would be further illuminating. For example, the fact that
Theorem 4 does not cover the mirror image of case (c),
wherein f is k-product and g is log-submodular, is not a
coincidence. As observed by Ruozzi [8], the inductive proof
of these two cases crucially relies on the bounding function
being closed under marginalization, a property that does not
hold for log-submodular functions.



III. PROOF OF THEOREM 4
A. Case (a)

For any two functions f, g with common domain D, say that
f is weakly log-majorized by g if for every A ⊆ D, there exists
B ⊆ D with |B| = |A|, such that

∏
x∈A f(x) ≤

∏
x∈B g(x).

Lemma 1 ([6] p. 168, Corollary 5.A.2.b.). If a function f is
weakly log-majorized by a function g, then Z(f) ≤ Z(g).

Theorem 4(a) follows from Lemma 1 and the following.

Theorem 5. Under the conditions of Theorem 4(a), f is
weakly log-majorized by g.

Proof. For a k × t × n tensor T (think of k as height, t as
width, and n as depth) call each k × n matrix a slice, each
k × t matrix a screen, and each t× 1 vector a rod. We write
↑T for the tensor resulting by applying ↑ to each slice and

←−
T

for the tensor resulting by applying ←− to each screen.
To prove that f is weakly log-majorized by g it suffices to

prove that for every t ≥ 1, for every t-subset of {0, 1}k×n, if
we arbitrarily stack the t matrices in the subset to form a tensor
T ∈ {0, 1}k×t×n, we can find a tensor U ∈ {0, 1}k×t×n with
distinct slices, i.e., another t-subset of {0, 1}k×n, such that
F (T ) :=

∏
i∈[t] f(T∗i∗) ≤

∏
i∈[t] g(U∗i∗) := G(U).

Given T , to find U we let π be any permutation of the rods
of T that keeps each rod within its screen while rearranging
(sorting) the rods of each screen in order of weight (number
of ones). We let U = π(T ). Observe that U has distinct slices
as it is the result of permuting the rods of T , i.e., of a tensor
with distinct slices. Crucially, observe that ↑(

←−
T ) = π(

←−
T ) =←−−

π(T ) =
←−
U . Invoking first the log-supermodularity of f , then

the fact f ≺↑ g, then the fact ↑(
←−
T ) =

←−
U , and finally the

log-submodularity of g, we see that

F (T ) ≤ F
(←−
T
)
≤ G

(
↑(
←−
T )
)
= G

(←−
U
)
≤G (U) . (2)

B. Case (b)

Proof. Let P (t) denote the proposition that Theorem 4(b)
holds for n = t and all k ≥ 1. We proceed by induction.

When n = 1, the fact that f is k-product is equivalent to it
being log-modular, i.e., log-submodular and log-supermodular.
Therefore, by hypothesis, f, g : {0, 1}k 7→ R≥0 are such
that f is log-supermodular, g is log-submodular, and f ≺↑g.
Thus, Theorem 4(a) applies yielding Z(f) ≤ Z(g), i.e.,
P (1). We note that establishing the base case by applying our
Theorem 4(a) is our only simplification of the proof, as the
inductive step is as the original (the same is true fore case (c)).

For n ≥ 2, let f, g : {0, 1}k×(n−1) 7→ R≥0 denote the
sum of f, g, respectively, over all 2k possible last columns.
Since Z(f) = Z(f) and Z(g) = Z(g) it suffices to prove
that Z(f) ≤ Z(g). For this we observe that, trivially, f, g are
k-product, because f, g, respectively, are k-product. Thus, if
can we prove f ≺↑g we can invoke P (n− 1) and conclude.

To prove f ≺↑g we define for arbitrary Y ∈ {0, 1}k×(n−1)
functions f∗, ĝ : {0, 1}k 7→ R≥0, as f∗(ttt) = f (Y | ttt) and

ĝ(ttt) = g (↑Y | ttt). Since Z (f∗) = f(Y ) and Z (ĝ) = g (↑Y ),
we are left to prove Z (f∗) ≤ Z (ĝ). For this we observe that
(i) f∗ ≺↑ ĝ since f∗(ttt) = f (Y | ttt) ≤ g (↑(Y | ttt)) = ĝ (↑ttt),
as f ≺↑ g, and that (ii) product functions are closed under
restriction. Thus, f∗, ĝ satisfy the conditions of P (1).

C. Case (c)

Proof. The reasoning is identical to that of case (b), except
that now f, f , f∗ are log-supermodular instead of k-product.
Specifically, for f, f∗, log-supermodularity is given and trivial,
respectively. To prove that f is log-supermodular we use the
Four Functions Theorem, i.e., case (b) for k = 2.

Let h : {0, 1}n 7→ R≥0 be log-supermodular and let S ⊆ [n]
be arbitrary. For xxx ∈ {0, 1}S , define hxxx : {0, 1}n−|S| 7→ R≥0
with hxxx(ttt) := h(xxx, ttt). Given any xxx,yyy ∈ {0, 1}S , applying the
Four Functions Theorem for f1 = hxxx, f2 = hyyy , g1 = hxxx∨yyy ,
and g2 = hxxx∧yyy , yields Z(hxxx)Z(hyyy) ≤ Z(hxxx∨yyy)Z(hyyy∧yyy), i.e.,
that the function that results after summing over all variables
not in S is log-supermodular.

IV. DISTRIBUTIVE LATTICES

Recall that a lattice L is a partially ordered set such that
every two elements, x and y, have a unique minimal upper
bound, denoted by x∨ y, and a unique maximal lower bound,
denoted by x ∧ y. If x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for
all x, y, z ∈ L, we say that lattice L is distributive. The
Four Functions Theorem is usually stated in the framework of
distributive lattices and with a stronger conclusion, claiming
the inequality for arbitrary marginals, as follows.

Theorem 6. Let L be a finite distributive lattice. If
f1, f2, g1, g2 are non-negative real valued functions on L such
that for all x, y ∈ L,

f1(x)f2(y) ≤ g1(x ∨ y)g2(x ∧ y) , (3)

then, for all X,Y ⊆ L,

f1(X)f2(Y ) ≤ g1(X ∨ Y )g2(X ∧ Y ) , (4)

where X ∨ Y = {x ∨ y : x ∈ X, y ∈ Y }, X ∧ Y = {x ∧ y :
x ∈ X, y ∈ Y }, and f(X) =

∑
x∈X f(x).

Since every distributive lattice can be embedded in the
subsets of some set, Theorem 1 readily implies the case of
Theorem 6 above, where X = Y = L. Moreover, it is not
hard to see that this case implies Theorem 6 in its generality
as follows: modify f1, f2 to equal 0 for x not in X,Y ,
respectively; it is trivial to check that (3) continues to hold
after doing so.

The above observations apply also to all three cases of
Theorem 4. In particular, Theorem 4 holds for non-binary
alphabet as well, which can be useful for counting problems
such as counting graph colorings. Finally, Theorem 4 extends
even to the case of continuous variables, with the obvious
modifications. Indeed, the continuous version of Theorem 4(c),
was exploited by Ruozzi in [9].
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